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Note on the swimming of slender fish 

By M. J. LIGHTHILL 
Royal Aircraft Establishment, Farnborough, Hampshire 

(Received 9 May 1960) 

The paper seeks to determine what transverse oscillatory movements a slender 
fish can make which will give it a high Froude propulsive efficiency, 

(forwaxd velocity) x (thrust available to overcome frictional drag) 
(work done to produce both thrust and vortex wake) 

The recommended procedure is for the fish to pass a wave down its body at a 
speed of around 2 of the desired swimming speed, the amplitude increasing from 
zero over the front portion to a maximum at the tail, whose span should exceed 
a certain critical value, and the waveform including both a positive and 
negative phase so that angular recoil is minimized. The Appendix gives a review 
of slender-body theory for deformable bodies. 

1. Introduction 
It has frequently been noted that swimming speeds attained both by fish and 

by mammals (such as porpoises) are remarkably high in relation to their available 
muscle power. This has been held to indicate, first, that frictional drag is so low 
that a large fraction of the boundary layer must be laminar, and, secondly, 
that the movements generating the thrust to balance frictional drag must 
produce only a small fractional drag increase as a result of the vorticity they 
create. Such achievements should be regarded as a challenge to other species 
wishing to propel themselves economically through fluids. 

The analysis of both these postulated achievements must be helped if the flow 
outside the boundary layer-that is, the inviscid-fluid flow around the swimming 
animal-can be determined. This provides the environment in which the boun- 
dary layer develops, and determines how and how much vorticity is shed. 

Now this external flow is easy to evaluate approximately for what we shall 
call a ‘slender fish’-namely, either a fish or a swimming mammal, whose dimen- 
sions and movements at right angles to its direction of locomotion are small 
compared with its length, while its cross-section varies along it only gradually. 
The ‘slender-body ’ theory (which goes back foMunk’s work (1924) on flow about 
airships; for a general review see Lighthill (1960)) can be applied to these. 

In this note the theory is worked out for a slender fish which makes swimming 
movements only in a single direction at right angles to its direction of locomotion. 
Types of movement producing thrust with a small vortex-drag penalty are 
determined, and some remarks made on the boundary -layer development 
which they might induce. 
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2. Inviscid-flow theory of the forces produced by swimmin g movements 
It is convenient to consider swimming movements which enable the fish to 

stay still in water flowing with velocity U in the x-direction. We investigate the 
inviscid flow around the fish, remembering that, for the calculation to be relevant, 
it must yield a mean thrust on the fish sufficient to balance the mean frictional 

We describe the fish in the stream as ‘stretched straight’ when it is held 
stationary in a standard position such that no resultant normal force acts 
on any cross-section. When the fish is stretched straight the cross-section 
of its surface 8 at a distance x downstream from the nose will be denoted 

We suppose now that in swimming the cross-section 8, receives a displacement 
h(x,t) from the stretched straight position, in the z-direction, so that the dis- 
placement is at right angles to the direction of locomotion and varies both with 
position and time. Then on slender-body theory the flow can be regarded as 
compounded of 

drag. 

by 8,. 

(i) the steady flow around the stretched straight body; 
(ii) the flow due to the displacements h(x, t). 
To envisage the flow component (ii), we observe that a cross-section 8, moves, 

relative to the fluid flowing past it with velocity U, at a velocity 

ah ah 
V(x,t) = --f u- 

at ax, 

and that, locally, the body shape differs little from that of an infinite cylinder 
C, whose cross-section is 8, all the way along. Accordingly, to the slender-body 
approximation, the flow component (ii) near 8, is identical with the two-dimen- 
sional potential flow that would result from the motion of the cylinder C, through 
fluid at rest with velocity V(x, t). 

We suppose now that this flow has momentum 

per unit length of cylinder, where p is the density. In  the usual terminology, 
PA@) is the ‘virtual mass’ of the cylinder C, per unit length for motions in the 
z-direction. Thus, the coefficient A(x) has the dimensions of area; for example, 
it is equal to the area of the cross-section 8, when the latter is circular, while for 
an ellipse with minor axis in the z-direction A(x) is the area of its circumscribing 
circle. 

To obtain the instantaneous lift per unit length of fish, L(x, t), that is, the force 
in the z-direction on the cross-section AS,, we observe that this must be equal and 
opposite to the rate of change of momentum of the fluid passing 8,; that is, 
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We next write down the rate, W, at  which the fish does work by making 
displacements h(z, t )  in the direction in which these lift forces act; this is 

The mean over a long time of the time-derivative in this last expression is zero. 
As regards the final term, we have A(0) = 0, but because the fish has a tail 
A(1) is non-zero-at least on the approximation of assuming a straight trailing 
edge, which makes A(2) equal to  the area of the circle with the trailing edge as 
diameter. Hence, (4) gives for the mean rate of working by the fish 

This value can be interpreted physically as the mean of the product of the 
lateral velocity %/at of the tail trailing edge with the rate of shedding ( p  V A )  U 
of lateral momentum (2) behind the trailing edge, on the argument that rate of 
working equals velocity times rate of change of momentum. 

On the other hand, the rate of shedding of kinetic energy of lateral fluid 
motions is (+pV2A) U ,  with (again) the trailing edge values of V and A .  If, now, 
we subtract the mean value of this from the mean rate of working v, we should 
obtain the rate of working available for producing the mean thrust, say, P ;  
this rate is HU. If the result of this subtraction were negative, one would infer 
that there was a mean drag, more energy being shed in the wake than is put into 
the fluid by the swimming movements. In this case an external force would be 
needed to supply the extra work to push the fish through the fluid against this 
drag and the frictional drag together. Positive thrust, on the other hand, would 
produce motion at  the speed at which it is exactly balanced by frictional drag. 

To sum up, 
TT-ipFAU = P U ,  

whence by (6 )  the mean thrust is 

P = +pA(Z) [(T- u2@) . 
x=l 

(7) 

The above arguments for determining P are attractively simple, but may not 
be overwhelmingly convincing. To put it beyond a doubt that the inviscid-flow 
slender-body pressure distributions do yield (7) as mean resultant thrust, the 
author has calculated them in the Appendix (which was in any case desirable) 
and demonstrated the p o i n t a n d  may as well admit that he thought of the above 
arguments only after getting the answer by the method of the Appendix. 

20-2 
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3. Conditions for efficient thrust 
The dynamic problem of obtaining efficient thrust, with the values of forces 

which were obtained in Q 2, is as follows. We want a high value of the inviscid- 
flow efficiency of the swimming movements, which by ( 5 )  and (6) is 

The suffix P here is intended to suggest ‘Froude efficiency’, which similarly 
relates thrust to the total kinetic energy added to the fluid-including energy 
devoted to  forming a vortex wake. 

At the same time the displacements h(z , t )  which the fish can make are re- 
stricted by two considerations. First, the rate of change of lateral momentum 
which they produce must be equal to the resultant of the lift forces; this means 

where S(z) is the area of the cross-section 8, and the density of the fish has been 
taken equal to the density p of the water. Secondly, the rate of change of angular 
momentum about the y-axis which they produce must be equal to the moment of 
the lift forces about that axis: 

Any movements attempted by the fish which failed to satisfy (9) and (10) would 
automatically produce reactions, or ‘recoils’, in the form of rigid-body move- 
ments 

which when added to h(z ,  t )  would cause it to satisfy (9) and (10). 
Now, from (8),  we see that an efficiency r ] ,  only a little less than 1 will be 

obtained if at the trailing edge typical values of V = ah/at+ Uah/alc: are small 
compared with those of ah/at, but positively correlated with them. The last 
point is essential; negative correlation would produce negative thrust. The first 
point, on the other hand, must not be overdone: although for given tail velocity 
ah/at the efficiency is increased by making ah/at+ Uah/ax smaller, we see from 
(7) that the actual thrust is reduced, so that a compromise is required. 

The condition that ahlat + Uahlax must have values generally smaller than, 
but positively correlated with, ah/at is a somewhat restrictive one. For example, 
a standing-wave form H ( z )  COB wt for h, although it could always be made to 
satisfy (9) and (10) by incorporation of a linear ‘recoil function’ in H(z) ,  would 
give a Froude efficiency 

1 w2H2(l) + U2H’2(1) 
02H2(1) ’ q,= 1 - 2  

which cannot exceed 9. This is doubtless why fish do not normally attempt to 
swim by causing their bodies to execute the rather simple movements of a 
standing wave. 
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A more satisfactory form of h(x, t ) ,  if only it could be made to satisfy (9) 
and ( l o ) ,  would be 

h(x, t )  =f@)s( t -E)  , (13) 

where g(t)  is an oscillatory function such as cyswt. Equation (13) represents a 
travelling wave, which moves down the iiah’s body with velocity c, and whose 
amplitudef(x) may vary with position along the fish. Substitution in (8 )  gives 

The rate of working is positive only if c > U. To make r ] ,  close to 1 it is desirable 
to havef’(Z) practically zero; indeed, a non-zero value off’(Z) reduces the thrust 
without altering the rate of working. On the other hand, it is wasteful to keep 
f(x) constant all along the length of the fish, since the thrust depends only on 
values at x = I ;  and it will be found desirable, also for other reasons, to letf(z) 
increase gradually from zero at x = 0 to a maximum, withf’(Z) = 0, at the trailing 
edge. 

Under these circumstances, r ] ,  would be +( 1 + U/c) ,  and for example, r ] ,  = 0.9 
for c = 1.25U. Such a value of c is sufficiently in excess of U to give a substantial 
positive mean thrust 

P = #&(I) ( 1  -S)fyZ)p. 

To investigate whether the thrust (15) would be adequate with c = 1*2SU, 
note that in a real flow it would have to balance the frictional drag 

D = +pUzCDS, (16) 

where CD is a drag coefficient based on the total surface area S. In (la),  f 2(Z) g’2 
is the mean square lateral velocity of the trailing edge, which should not exceed 
0.05U2 if the assumptions which have been made in the theory are to hold- 
and, indeed, these restrictions to small disturbances are almost certainly bene- 
ficial in reducing drag. With this limitation, and with c = 1.25U, the balance of 
thrust and &ag can be achieved only if 

CDS A(1) > - 
0.018’ 

Here A(Z) = ins2, where s is the span of the tai1 trailing edge, and equation (17) 
indicates the advantage for efficiency of having a tail of adequate span. 
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Such a conclusion would be too optimistic, however, as it does not take account 
of recoil. A precise solution of the problem of what efficiency can be obtained 
with adequate thrust, and within the limitations set by our assumptions, from 
a displacement function into which a recoil function (1 1) has been incorporated 
to make it satisfy (9) and (lo), would necessitate an extensive computing pro- 
gramme. However, the followin8general remarks would probably be supported 
by such computations. 

Any angular recoil (represented by the second term in (1 1)) tends to reduce 
thrust without affecting rate of working, for it produces extra terms in (ahlax),=, 
which, being dependent on displacement rather than velocity, do not correlate 
well with (ah/at),,,, and therefore contribute (through their mean square) to 
the numerator of (8) but not to the denominator-just as did the terms inf2(Z) 
in (14). 

By contrast, a small transverse recoil of the mass-centre without angular 
motion, if well correlated with the trailing-edge movement, would not alter the 
efficiency that can be obtained for given mean square trailing-edge velocity and 
mean thrust, although it wouldsomewhat increase the valueof the wave-velocity c 
required to obtain that efficiency. (This is because the reduction of ah/at 
requires a corresponding reduction of %/ax.) 

FIUURE 1. Suggested cycle of swimming movements. Successive shapes of fieh centre-line 
ere shown, with time increasing downwards. Motion is from right to left. 

Accordingly, such travelling wave-forms as produce minimal angular recoil 
are desirable. A good solution appears to be as follows: 

(i) conhe  motions to the rear part of the fish where fish mass is low; 
(ii) keep V low for given ah/& by having c near to U, thus reducing water 

momentum in spite of the high virtual mass of the rear cross-sections; 
(iii) most important of all, let the wave-form have a positive and a negative 

phase in the region of substantial amplitude (figure l), so that the angular recoils 
produced by each tend to cancel out. (This, incidentally, will tend also to reduce 
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the transverse recoil of the mass centre and so keep down the value of c, and 
hence of V ,  thus assisting (ii).) 

These arguments seem to confirm that the type of swimming action favoured 
by most fish has good efficiency. 

4. Boundary-layer considerations 
The inviscid flow around the swimming fish, which is calculated in detail in 

the Appendix and whose effects on its dynamics have been studied in $9 2 and 3, 
provides (as remarked in $1) the environment in which the boundary layer 
develops. We now consider briefly the possible effects of the boundary layer on 
the flow and on the dynamics, asking first whether separation occurs and if so 
to what effect, and secondly whether there is transition to turbulence. 

Separation is most likely to  occur in the cross-flows. Consider a thin slab of 
fluid with plane faces perpendicular to the z-direction, moving past the fish at 
velocity U with only slight distortions from the plane shape. This slab of fluid 
is aware of the presence of a body of approximately cylindrical shape C, in its 
midst, but the cross-section 8, of that body changes slowly with time and ex- 
hibits a movement through the fluid in the z-direction with velocity V ( x , t ) .  
If the flow produce by this movement has momentum M and energy E per unit 
width of slab, then in the absence of boundary-layer separation M and E have 
the potential-flow values pVA and +pV2A, and the resultant forces are as 
calculated in $2. 

When, however, vorticity is released from the surface by boundary-layer 
separation in this transverse flow, M and E are altered by amounts equal to 
the momentum and energy of the vortex system in the presence of the boundary. 
But the physical arguments of $ 2 indicate that we will still have 

that is, the mean rate of working of the fish will be equal to the mean product of 
the lateral velocity of the trailing edge with the rate of shedding of momentum 
from it; while the wasted part of this rate of working will be 

that is, the rate of energy shedding from the trailing edge. The Froude efficiency 
is therefore 

Now, it follows from (20) that, for the efficient types of swimming motion 
discussed at the end of 0 3, the effect of qs on vortex contributions to E and M is 
limited to a slight increase in the factor 4 in equation (8). Note first that, even 
when the wave-form has a positive and a negative phase as in figure 1, the 
slab of fluid moving past it, at a velocity U only a little less than the wave velo- 
city, experiences cross-section movements essentially in a single direction, with 
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V increasing to a maximum at the tail. Whatever vorticity is generated, the fluid 
energy per unit width of slab must increase during this process at a rate 

dE dM 
- =  V - *  
at at 

The effect of vortex shedding as V increases means that M will increase more 
rapidly than in direct proportion to V ,  due to the vortex drag, and this with 
(21) makes E / M V  somewhat greater than + (for example, if M cc Vs, then E/MV 
rises to $), although M remains in phase with V and E with V2.  These considera- 
tions make a change in the factor + in equation (8), but do not qualitatively alter 
the conclusions about efficiency; for example, 86% is not much worse than 
90 % in this context. 

Physically, this is still because transverse velocities V of fish relative to fluid 
are being kept small compared with absolute transverse velocities. 
As to the boundary layer in the flow along the fish, the additional pressures 

due to the transverse motions (called p , + p 2  in the Appendix) are too small, 
when V is kept small relative to ah/%, to affect substantially its development. 
The only problem, therefore, is the long-standing one of why the boundary layer 
should have any special tendency to laminar flow. Here one can only draw 
attention to the remarkable results achieved by Coleman-Kramer Inc. of Los 
Angeles with their ‘Lamiflo’ coating (Judge 1960), which consists of a thin rubber 
skin attached to the surface of a body by short rubber pillars between which a 
free-flowing viscous fluid is present. This has been found to halve turbulent 
boundary-layer drag of the body in water, presumably owing to reduction of 
turbulence level by damping of surface pressure fluctuations. It is possible that 
layers of blubber can have a similar effect. 

The author expresses his gratitude to Sir James Gray for extremely interesting 
discussions of the problem. 
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Appendix. The inviscid flow around a slender fish 
To obtain the pressure distribution in this problem it is almost essential to make 

a transformation of co-ordinates, so that the body becomes a fixed surface- 
for, otherwise, there are severe difficulties due to applying boundary conditions 
at  a surface whose position is displaced in a direcbion in which gradients are 
specially steep. 

Accordingly we introduce new co-ordinates X, Y, 2 and T, where 

X = X ,  Y =y,  Z =  z-h(z,t), T = t  (A 1) 
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Then Laplace’s equation for the potential 4 becomes 

a ah a 

If now E is a slenderness parameter (so that the fish’s lateral dimensions do not 
exceed d, nor its lateral velocities EU) ,  then the first term in (A 3) is of order e2 
relative to the second and third, so that near the body we can use the two- 
dimensional Laplace equation 

a24 a24 

a 2 + z 2  = 0. 

If now the equationof the surface S of the stretched straight fish is F(z, y, z )  = 0, 
then in these co-ordinates (A 1) the surface of the swimming fish has the equation 
F ( X ,  Y,Z) = 0, and the boundary condition on it is obtained by setting equal 
to zero the rate of change BFlBt of F(X, Y,Z) following a particle of fluid. 
By (A 2), this gives 

(A 5 )  

(A 6) We now put 4 = UX + 40(X, Y ,  2) + q51(X, Y, Z ,  T), 
where UX + q50 is the potential of the flow when h = 0 (that is, the steady flow 
when the fish is held stationary in the stream). For a slender fish aF/aX is small 
cornpared with aF/a Y and aF/aZ, and derivatives of #o and q51 with respect to 
X, Y and Z are small compared with U. Also ah/aX is small, and ah/aT small 
compared with U. Hence, with products of small quantities neglected in (A 5) ,  
we obtain 

The special cme h = 0, q51 = 0 gives us 

a40ap a+ aF aF +-o- = -u- 
aYaY azaz ax 

&B the boundary condition for #o. Subtracting this from (A 7), we obtain 

as the boundary condition for g51. 
We shall not discuss the method of calculating the steady-flow potential q30, 

which is fairly well known, and leads to a pressure distribution with no resultant 
force or moment for a symmetrical shape like a fish. Passing therefore to 41, 
we note that equation (A4), with the boundary condition (A9) and the con- 
dition that +- 0 at infinity, implies that, for each X, q51 is the potential of the 
two-dimensional flow in the Y, Z plane, resulting from the movement of an 
infinite cylinder C,, whose cross-section is S,, that is, the fish cross-section for 
the given value of X, and which moves in the 2-direction with velocity 

ah ah 
V ( X ,  T) = - 

aT+UaX. 
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If, therefore, O(X, Y,Z) is the potential due to the said cylinder C, moving 
with unit velocity in the 2-direction through fluid at r e s tno te  that it varies 
with X only because the choice of cylinder cross-section does-then the solution 
to the equations for $1 is 

$l(X, y, 2, T) = V ( X ,  T) OW, Y ,  2). (A 11) 

We now calculate the associated pressure variations. Here we must remember 
that derivatives of $o and $1 with respect to X are of order Uea (more strictly, 
Ue210ge-1),* but that derivatives with respect to Y and 2 are of order UE. 
From Bernoulli's equation 

we must pick out the terms of order €2, neglecting those of order e4. This gives 

= PO+Pl+PZ, (A 13) 

say, wherep,, is the pressure distribution in steady flow past the stretched straight 
fish, p a  is the pressure distribution due to steady motion of the cylinder C, 
through fluid at  rest with velocity and p1 is the remainder of the pressure 
distribution. Thus, po  depends solely (and quadratically) on the shape of the 
stretched straight fish, p ,  solely (and quadratically) on its displacements, and 
pl linearly on both. 

Now we me interested mainly in the distribution of the lift (that is, resultant 
force in the z-direction) per unit length, L(X,  T), and in the resultant thrust P. 
We obtain L to order E3, neglecting terms of order e6. 

There is no contribution to lift from p ,  or p,; for po has zero resultant in the 
z-direction over a cross-section by the definition of the stretched straight 
position, and p ,  has because the resistance to the motion of C, in steady poten- 
tial flow is zero. Therefore, only p,, produces any local normal force, and by (A 13) 

Now in (A 14) we can use the facts that $1 = VO, and that 

OdY=A(X), 
S X  

* For this rewon the terms neglected in (A7) were of order ea (more strictly k log e-l) 
relative to those retained. 



Note on the swimming of slender f i h  315 

where p A ( X )  is the virtual mass per unit length of tho cylinder C,, whose cross- 
section is &,, when moving in the z-direction; thus, A(X) has the dimemiom of 
area. From (A 15) it follows that 

where the last term results from the variation of the cross-section X, with X, 
which causes the value of Z for given Y to vary along the surface. 

On the right-hand side of (A 16), the fist  term can be identified with the first 
part of the integral in (A 14). Also, the second term can be identified with the 
second part, for it is 

u jSX 3 gg dY, 

which by (As )  is 

(A 18) 
where Ex is the area external to 8,. Using Laplace’s equation in two dimensions 
for +o and then for q51, we can write (A 18) as 

(A 19) 
where the boundary condition (A 9) has been used to throw (A 17) into the form 
shown in the second part of (A 14). 

This equation now shows, as stated in 5 2, and there interpreted physically, 
that the lift per unit length is 

where V is given by (A 10). 
The mean value of the thrust P is now obtained to order e4, neglecting terms 

of order 8. Writing P as an integral over the surface of the swimming fish, and 
then using the co-ordinates (A 1) to express it as an integral over 8, we obtain 
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where Pl is to be interpreted as the resultant in the forward direction of the lift 
forces L(X,  T), and we have simply 

” ”  

since the pressures p ,  have zero resultant, and for a symmetrical fish JJ p ld  Y dZ 

is zero (while even for an unsymmetrical fish the mean of this oscillatory force 
would be zero). 

In (A 22), the d Y d Z  is an elementary area of the surface S of the stretched 
straight fish, projected in the negative X-direction (or thrust direction). Such 
an area lying between cross-sections S,  and S,,,, can be written - (an) ds, 
where ds is an element of length around S,, and Sn is the normal distance be- 
tween the curves S, and S,,,, when projected on to the same plane (figure 2). 
Accordingly, that part of Pz which arises from between the cross-sections Sx 
and Sx+ax can be written 

- f S X  (Sn)P,dS* (A 23) 

Now, p 2  is the pressure distribution in potential flow due to the motion of the 
cylinder C, through fluid with constant velocity V in the z-direction. In this 

bX 
+ -  

X - 
c- 

4‘\ 
s, sx+6.x 

8n 
FIQURE 2. Neighbouring shapes of fish cross-section, viewed at right angles to the direction 

of looomotion in the upper diagram and along it (on a larger scale) in the lower. 
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motion the kinetic energy of the fluid per unit length of cylinder is #pV2A(X) 
and the momentum p V A ( X ) .  If now, during this motion, the cylinder C, 
performed gradually a small change of cross-section from S, to Sx+bx, the fluid 
momentum would change by 

(A 24) 
dA 
ax pV6A = p V { A ( X + 6 X ) - A ( X ) }  =pV-CYX, 

and the cylinder, moving at constant speed V ,  must do work pVz6A to produce 
this change of momentum. 

But the motion of the cylinder is not simply rectilinear; in addition, each 
element ds of the surface moves outwards a distance 6n (figure 2) against a pres- 
sure pz .  This means that the cylinder must also do a quantity of work given by 
the integral in (A 23), per unit length. But the total work done must equal the 
change in the kinetic energy +pVzA of the fluid, giving* 

pVz6A+ (6n)pzds = +pVzSA. I 
This evaluates (A23), the part of Pz which arises from between the cross- 

sections S, and Sx+Bx, and enables us to write 

We now throw the mean value of the part Pl of the thrust, which arises from 
forward-directed lift, into a similar form. By (A 20) and (A 21), it is 

The mean over a long time of the time-derivative in this last expression is zero. 
Hence the mean value ie 

Adding this to the averaged form of (A 26), we obtain, for the total mean thrust 
P = + c, the simple equation 

which was stated in 0 2 as equation (7). 

* The correctness of this formula is easily checked for a circle or an ellipse. When the 
cross-section is increasing, the integral in (A23) comes out negative, which physically ie 
because the regions of suction outweigh the regions of pressure around the surface. 


